The polymerase chain reaction-based SARS-CoV-2 detection

Authors

Keywords:

, Polymerase Chain Reaction, Coronavirus Infections, Clinical Laboratory Techniques

Abstract

Introduction: the reverse transcriptase polymerase chain reaction is a highly precise technique in the detection and amplification of genetic material, and therefore in the detection of viruses.

Objective: to describe the bases of the use of the polymerase chain reaction with reverse transcriptase as a diagnostic test in the detection of SARS-CoV-2.

Method: a literature review was carried out on articles published up to May 2020. The following databases were consulted: Scopus, Wiley Online Library, SciELO, DIALNET, EBSCO, MEDLINE and PubMed. Articles in Spanish and English were retrieved, selecting 43 references.

Development: The reverse transcriptase polymerase chain reaction to detect SARS-CoV-2 consists of reading RNA-dependent RNA polymerase, ORF1ab fragments, the E gene, the N gene, and the S gene. The nasopharyngeal exudate offers better results than oropharyngeal and saliva as sample. The inclusion of reverse transcriptase polymerase chain reaction tests using rectal swab specimens is necessary in suspected false negative cases. New studies and techniques are developed with the aim of optimizing the detection process.

Conclusions: the availability of diagnostic tests is crucial for the isolation of positive cases and the monitoring of the epidemiological chain of transmission. RT-PCR turned out to be the test of choice during the viral replication period. The RT-LAMP assay is a rapid diagnostic alternative with similar principles to RT-PCR.

 

Downloads

Download data is not yet available.

References

1. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology [Internet]. 2020 [citado 12 mayo 2020];92(4): 418-423. Disponible en: http://dx.doi.org/10.1002/jmv.25681

2. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. En* Springer, Cham. Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Vol.419. Springer, Cham; 2017 p.1-42. Disponible en: https://doi.org/10.1007/82_2017_25

3. Paules CI, Marston HD, Fauci AS. Coronavirus infections - more than just the common cold. JAMA [Internet]. 2020 [citado 12 mayo 2020]; 323(8): 707-708. Disponible en: http://dx.doi.org/10.1001/jama.2020.0757

4. Arshad-Ali S, Baloch M, Ahmed N, Arshad-Ali A, Iqbal A. The outbreak of Coronavirus Disease 2019 (COVID-19) - An emerging global health threat. Journal of Infection and Public Health [Internet]. 2020 [citado 15 mayo 2020]; 13(2020): 644-646. Disponible en: https://www.sciencedirect.com/science/article/pii/S1876034120303658

5. Shao-Chung C, Yuan-Chia C, Yu-Long FC, Yu-Chan C, Mingte C, Yang CH et al. First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan. Journal of the Formosan Medical Association [Internet]. 2020 [citado 27 abril 2020]; 119(3): 747-751. Disponible en: https://www.sciencedirect.com/science/article/pii/S0929664620300449

6. J Reina. El SARS-CoV-2, una nueva zoonosis pandémica que amenaza al mundo. Vacunas [Internet] 2020 [citado 21 mayo 2020];21(1): 17-22. Disponible en: https://doi.org/10.1016/j.vacun.2020.03.001

7. Moreno Martínez FL, Moreno López FL, Oroz Moreno R. Repercusión cardiovascular de la infección por el nuevo coronavirus SARS-CoV-2 (COVID-19). CorSalud. 2020;12(1):3-17. Disponible en: http://www.revcorsalud.sld.cu/index.php/cors/article/view/588/1112

8. Adhanom-Ghebreyesus T. WHO Director-General's opening remarks at the media briefing on COVID-19 [Internet]. WHO; 2020 [citado 27 abril 2020]. Disponible en: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

9. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host & Microbe [Internet]. 2020. [citado 2 mayo 2020]; 27(3): 325-328. Disponible en: https://www.sciencedirect.com/science/article/pii/S193131282030072X

10. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al. A new coronavirus associated with human respiratory disease in China. Nature [Internet]. 2020 [citado 12 mayo 2020]; 579(2020): 265–269 Disponible en: https://www.nature.com/articles/s41586-020-2008-3

11. Wang H, Li X, Li T, Zhang S, Wang L, Wu X et al. The genetic sequence, origin, and diagnosis of SARS-CoV-2. J Clin Microbiol Infect Dis [Internet]. 2020 [citado 5 mayo 2020]. Disponible en: https://dx.doi.org/10.1007/s10096-020-03899-4

12. Khailany R, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Reports [Internet]. 2020 [citado 5 mayo 2020]; 19(Junio 2020): 100682. Disponible en: https://www.sciencedirect.com/science/article/pii/S2452014420300960

13. Sethuraman N, Stanleyraj-Jeremiah S, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2 JAMA [Internet]. 2020 [citado 18 mayo 2020]; 323(22):2249–2251. Disponible en: https://doi.org/10.1001/jama.2020.8259

14. Wang-Shick Ryu. Molecular virology of human pathogenic viruses. London, UK ; San Diego, CA : Academic Press; 2017.

15. Tamay de Dios L, Ibarra C, Velasquillo C. Fundamentos de la reacción en cadena de la polimerasa (PCR) y de la PCR en tiempo real. Investigación en discapacidad [Internet]. 2013 [citado 12 Jul 2020]; 2(2): 70-78. Disponible en: https://www.medigraphic.com/pdfs/invdis/ir-2013/ir132d.pdf

16. Lorussoa A, Calistria P, Mercantea MT, Monacoa F, Portanti O, Marcacci M et al. A “One-Health” approach for diagnosis and molecular characterization of SARS-CoV-2 in Italy. One Health [Internet]. 2020 [citado 5 mayo 2020]; 10 (2020): 100135. Disponible en: https://www.sciencedirect.com/science/article/pii/S2352771420300823

17. Ding-feng L, Qi-ming Ying, Yue-song Weng, Chi-bin Shen, Jin-guo Chu, Kong J et al. Dynamic change process of target genes by RT-PCR testing of SARS-Cov-2 during the course of a Coronavirus Disease 2019 patient. Clinica Chimica Acta [Internet]. 2020 [citado 5 mayo 2020]; 506(Julio 2020): 172-175. Disponible en: https://www.sciencedirect.com/science/article/pii/S0009898120301340

18. Wang M, Zhou Y, Zong Z, Liang Z, Cao Y, Tang H et al. A precision medicine approach to managing Wuhan Coronavirus pneumonia. Precision Clinical medicine [Internet] . 2020 [citado 8 mayo 2020]; 3(1) 14-21. Disponible en: https://doi.org/10.1093/pcmedi/pbaa002

19. Tang-Xiao A, Xin-Tong Y, Gao C, Zhu L, Jie-Zhang Y, Zhang S. Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: A descriptive study. Journal of Clinical Virology [Internet]. 2020 [citado 12 mayo 2020]; 127(Junio 2020): 104346. Disponible en: https://doi.org/10.1016/j.jcv.2020.104346

20. Hogan C, Sahoo M, Hong-Huang C, Garamani N, Stevens B. Comparison of the Panther Fusion and a laboratory-developed test targeting the envelope gene for detection of SARS-CoV-2. Journal of Clinical Virology [Internet]. 2020 [citado 12 mayo 2020]; 127 (Junio 2020): 104383. Disponible en: https://doi.org/10.1016/j.jcv.2020.104383

21. Ishigea T, Murataa S, Taniguchib T, Miyabea A, Kitamuraa K, Kawasaki K et al. Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories. Clinica Chimica Acta [Internet]. 2020 [citado 5 mayo 2020]; 507(agosto 2020): 139-142. Disponible en: https://www.sciencedirect.com/science/article/pii/S0009898120301789

22. Li C, Ren L. Recent progress on the diagnosis of 2019 Novel Coronavirus. Transboundary and Emerging Diseases [Internet]. 2020 [citado 18 mayo 2020]; 67(4): 1485-1491. Disponible en: https://doi.org/10.1111/tbed.13620

23. Kumar-Vashist S. In Vitro Diagnostic Assays for COVID-19: Recent Advances and Emerging Trends. Diagnostics [Internet]. 2020 [citado 5 mayo 2020]; 10(4):202. Disponible en: https://www.mdpi.com/2075-4418/10/4/202

24. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu D, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance [Internet]. 2020 [citado 21 mayo 2020]; 25(3):2000045. Disponible en: https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

25. Fuk-Woo-Chan J, Chik-Yan-Yip C, Kai-Wang-To K, Hing-Cheung-Tang T, Cheuk-Ying-Wong S, Leung KH et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. Journal of Clinical Microbiology [Internet]. 2020 [citado 18 mayo 2020]; 58:e00310-20. Disponible en: https://jcm.asm.org/content/58/5/e00310-20.long

26. Wolters F, Van de Bovenkamp J, Van den Bosch B, Van den Brink S, Broeders M, Chung-Hoa N et al. Multi-center evaluation of cepheid xpert® xpress SARS-CoV-2 point-of-care test during the SARS-CoV-2 pandemic. Journal of Clinical Virology [Internet] 2020 [citado 14 mayo 2020];128(Julio 2020): 104426. Disponible en: https://dx.doi.org/10.1016/j.jcv.2020.104426

27. Loeffelholz M, Wei-Tang Y. Laboratory diagnosis of emerging human coronavirus infections– the state of the art. Emerging Microbes & Infections [Internet]. 2020. [citado 5 mayo 2020]; 9(1): 747-756. Disponible en: https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1745095

28. Liu R, Han H, Liu F, Lv Z, Wu K, Liu Y et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta [Internet]. 2020 [citado 8 mayo 2020]; 505(Junio 2020): 172–175. Disponible en: https://doi.org/10.1016/j.cca.2020.03.009

29. Wang W, Xu Y, Gao R, Gao R, Lu R, Han K, Wu G et al. Detection of SARS-CoV-2 in different types of clinical specimens. Jama [Internet] . 2020 [citado 7 mayo 2020]; 323(18) 1843-1844. Disponible en: https://doi.org/10.1001/jama.2020.3786

30. Wang X, Tan L, Wang X, Liu W, Lu Y, Cheng L et al. Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. International Journal of Infectious Diseases [Internet]. 2020 [citado 5 mayo 2020]; 94(Mayo2020): 107-109. Disponible en: https://www.sciencedirect.com/science/article/pii/S1201971220302356

31. Huang Y, Chen S, Yang Z, Guan W, Liu D, Lin Z, et al. SARS-CoV-2 Viral Load in Clinical Samples of Critically Ill Patients. Am J Respir Crit Care Med. 2020 [En línea 15 Abr 2020];201(11). Disponible en: https://doi.org/10.1164/rccm.202003-0572le

32. Wölfel R, Corman V, Guggemos W, Seilmaier M, Zange S, Müller MA et al. Virological assessment of hospitalized patients with COVID-2019. Nature [Internet]. 2020 [citado 18 mayo 2020]; 581(2020): 465–469. Disponible en: https://dx.doi.org/10.1038/s41586-020-2196-x

33. Wei-Tang Y, Schmitz J, Persing D, Stratton C. The Laboratory Diagnosis of COVID-19 Infection: Current Issues and Challenges. Journal of Clinical Microbiology [Internet]. 2020 [citado 5 mayo 2020];58(6) e00512-20. Disponible en: https://jcm.asm.org/content/early/2020/04/03/JCM.00512-20

34. Zhang T, Cui X, Zhao X, Wang J, Zheng J, Zheng G et al (2020) Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. Journal of Medical Virology [Internet]. 2020 [citado 10 mayo 2020];92(7): 909-914. Disponible en: https://doi.org/10.1002/jmv.25795

35. Wang X, Zhou Y, Jiang N, Zhou Q, Ma W-L. Persistence of intestinal SARS-CoV-2 infection in patients with COVID-19 leads to re-admission after pneumonia resolved. International Journal of Infectious Diseases (2020) [Internet]. 2020 [citado 12 mayo 2020]; 95(2020): 433-435. Disponible en: https://doi.org/10.1016/j.ijid.2020.04.063

36. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell [Internet]. 2020 [citado 5 mayo 2020]; 181:(2) 271-280.e8 . Disponible en: https://www.sciencedirect.com/science/article/pii/S0092867420302294

37. Azzi L, Carcano G, Gianfagna F, Grossie P, Dalla-Gasperina D, Genoni A et al. Saliva is a reliable tool to detect SARS-CoV-2. Journal of Infection [Internet]. 2020 [citado 5 mayo 2020];81(1): e45-e50 . Disponible en: https://www.sciencedirect.com/science/article/pii/S0163445320302139

38. Williams E, Bond K, Zhang B, Putland M, Williamson D. Saliva as a non-invasive specimen for detection of SARS-CoV-2. Journal of Clinical Microbiology [Internet]. 2020 [citado 5 mayo 2020]; [In Press]:JCM.00776-20 . Disponible en: https://jcm.asm.org/content/jcm/early/2020/04/17/JCM.00776-20.full.pdf

39. Nörz D, Fischer N, Schultze A, Kluge S, Mayer-Runge U. Clinical evaluation of a SARS-CoV-2 RT-PCR assay on a fully automated system for rapid on-demand testing in the hospital setting. Journal of Clinical Virology [Internet]. 2020 [citado 12 mayo 2020]; 128 (Junio 2020): 104390. Disponible en: https://doi.org/10.1016/j.jcv.2020.104390

40. Poljak M, Korva M, Knap-Gašper N, Fujs-Komloš K, Sagadin M. Clinical evaluation of the cobas SARS-CoV-2 test and a diagnostic platform 2 switch during 48 hours in the midst of the COVID-19 pandemic. Journal of Clinical Microbiology [Internet]. 2020 [citado 12 mayo 2020] 58:e00599-20. Disponible en: http://doi.org/10.1128/JCM.00599-20

41. Yan C, Cui J, Huang L, Du B, Chen L, Xue G et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clinical Microbiology and Infection [Internet]. 2020 [citado 5 mayo 2020];26(6): 773-779. Disponible en: https://www.sciencedirect.com/science/article/pii/S1198743X20301865

42. Gun-Soo, Keunbon P, Seung-Hwa K, Seong-Jun B, Seung K, Kim BT et al. Development of Reverse Transcription Loop-Mediated Isothermal Amplification Assays Targeting Severe Acute Respiratory Syndrome Coronavirus 2. The Journal of Molecular Diagnostics [nternet]. 2020 [citado 5 mayo 2020];22(6): 729-735. Disponible en: https://www.sciencedirect.com/science/article/pii/S1525157820300908

43. Lin Y, Wu S, Hao X, Li X, Liu X, Ye S et al. Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform. Clinical Chemistry [Internet]. 2020 [citado 13 julio 2020]; 66(7): 975-977. Disponible en: https://academic.oup.com/clinchem/article/66/7/975/5823294

Published

2020-08-01

How to Cite

1.
Cancino-Mesa JF, Vitón-Castillo AA, Casí-Torres J. The polymerase chain reaction-based SARS-CoV-2 detection. Univ. Méd. Pinareña [Internet]. 2020 Aug. 1 [cited 2025 Apr. 3];17(1):e574. Available from: https://revgaleno.sld.cu/index.php/ump/article/view/574

Issue

Section

Review article