Pathogen- and damage-associated molecular patterns as molecular barriers to the immune response

Authors

Keywords:

PATHOGEN-ASSOCIATED MOLECULAR PATTERNS, MOLECULAR PATTERNS ASSOCIATED WITH DAMAGE, CELL DEATH.

Abstract

The principle of the functioning of the immune system is the recognition of foreign agents, foreign to the organism that must be neutralized and eliminated before they cause damage. The aim of the present work was to describe the essential aspects of the molecular patterns associated with pathogens and damage as molecular barriers of the immune response. A literature review was performed in the databases: PubMed, Scopus, Hinari, Elsevier, Medline and SciELO; 69 articles were evaluated, and 42 published in the last 5 years were selected including original and review articles in English and Spanish languages. Molecular aspects of the damage response are explained, from the recognition of an agent or damage, signaling pathways for cytokine release, vascular and cellular effects, to its resolution. The recognition of DAMPs and PAMPs as molecular barriers to the immune response is evident from their activity as promoters of the inflammatory response and their implications in cytokine activation as a host defense response and immunogenic cell death.

Downloads

Download data is not yet available.

References

1. Vanin-Cedeño CV, Suárez-Guerra J. Plasticidad inmunológica de células dendríticas, macrófagos y linfocitos T: implicación clínica [Internet]. Granma, Cuba; 2021 [citado 2024 Mar 16]. Disponible en: https://cibamanz2021.sld.cu/index.php/cibamanz/cibamanz2021/paper/viewFile/754/494

2. López Marín LM, Valdemar Aguilar CM. Patrones moleculares asociados a patógenos: ¿héroes o villanos en nanomedicina? Mundo nano [Internet]. 2018 Jun [citado 2024 Mar 16]; 11(20): 53-63. Disponible en: https://doi.org/10.22201/ceiich.24485691e.2018.20.62595

3. de León-Esperón LM, Llorente-Alvarez F, Díaz-Navarro O, Soto-Febles C, Lanio ME, Álvarez C. Molecular mechanisms underlying Immunogenic Cell Death: Overview on damage-associated molecular patterns and the stress of the endoplasmic reticulum. Biotecnol Apl [Internet]. 2021 [citado 2024 Mar 16]; 38(3): 3101-8. Disponible en: https://www.medigraphic.com/pdfs/biotecapl/ba-2021/ba213a.pdf

4. Inmunidad adaptativa: celular y humoral [Internet]. Mi sistema inmune; 2021 [citado 2024 Mar 16]. Disponible en: https://www.misistemainmune.es/inmunologia/componentes/inmunidad-adaptativa-celular-y-humoral

5. Dartiguelongue JB. Inflamación sistémica y sepsis. Parte I: generación de la tormenta. Arch Argent Pediatr [Internet]. 2020 [citado 2024 Mar 16]; 118(6): e527-e535. Disponible en: http://dx.doi.org/10.5546/aap.2020.e527

6. Salazar P, Muñoz N, Tene D, Pedreáñez A. Mecanismos implicados en la respuesta inflamatoria asociada al consumo de productos finales de glicación avanzada de origen dietético. Avances en Biomedicina [Internet]. 2023 [citado 2024 Mar 16]; 12(1): 21-36. Disponible en: https://dialnet.unirioja.es/descarga/articulo/9061203.pdf

7. López Vanegas NC, Calderón Salinas JV. La respuesta pro-inflamatoria en la intoxicación por plomo. Revista de Educación Bioquímica (REB) [Internet]. 2020 [citado 2024 Mar 16]; 39(3): 71-82. Disponible en: https://www.medigraphic.com/pdfs/revedubio/reb-2020/reb203b.pdf

8. Sarkis AS, Stéphan F. Sistema inmunitario cutáneo. EMC- Dermatología [Internet]. 2022 [citado 2024 Mar 16]; 56(3): 1-10. Disponible en: https://doi.org/10.1016/S1761-2896(22)46752-5

9. Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. Phytomedicine: international journal of phytotherapy and phytopharmacology [Internet]. 2021 [citado 2024 Mar 16]; 91: 153712. Disponible en: https://doi.org/10.1016/j.phymed.2021.153712

10. Luzardo LM, Acosta Castro Y, Serrano Jaime L. Estrategias basadas en el receptor de antígeno quimérico de las células NK para el tratamiento del cáncer. Arch Hosp Univ “Gen Calixto García” [Internet]. 2023 [citado 2024 Mar 16]; 11(3): 562-73. Disponible en: https://revcalixto.sld.cu/index.php/ahcg/article/view/1182

11. Torres A. Identificación protéomica de patrones moleculares asociados a daño durante la progresión clínica de la periodontitis [Tesis]. Santiago, Chile: Universidad de Chile; 2021 [citado 2024 Mar 16]. Disponible en: https://repositorio.uchile.cl/handle/2250/189309

12. Mahaling B, Low SW, Beck M, Kumar D, Ahmed S, Connor TB, et al. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. International journal of molecular sciences [Internet]. 2022[citado 2024 Mar 16]; 23(5): 2591. Disponible en: https://doi.org/10.3390/ijms23052591

13. Oliveira EA, de Araujo Barboza RL, Mantovani Bittencourt WJ, Jardim Porto LC, Pereira LJ, Seles Dorneles EM, et al. In silico selection of damage-associated molecular patterns (DAMPS) and their receptors in humans. Research, Society and Development [Internet]. 2022 [citado 2024 Mar 16]; 11(10): e452111032838. Disponible en: https://rsdjournal.org/index.php/rsd/article/view/32838

14. Zaru R. Receptores que reconocen patrones (PRRs). British Society for Immunology [Internet]. 2024 [citado 2024 Mar 16]. Disponible en: https://www.immunology.org/es/public-information/inmunolog%C3%ADa-bitesized/receptors-molecules/receptores-que-reconocen-patrones-prrs

15. Hernández-Moreno V, Herrera-Martínez M, Sáez-Escandón K. Respuesta inmune y susceptibilidad genética en las infecciones por Staphylococcus aureus. Rev Cub Hematol, Inmunol Hemot [Internet]. 2023 [citado 15 Mar 2024]; 39(1). Disponible en: https://revhematologia.sld.cu/index.php/hih/article/view/1879

16. Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev [Internet]. 2020 [citado 2024 Mar 16]; 44(1): 123-53. Disponible en: https://doi.org/10.1093/femsre/fuz030

17. Gross-Ochoa V, Monet-Álvarez D, Álvarez-Cortés J. Regulación de la respuesta inflamatoria dependiente de citocinas. MEDISAN [Internet]. 2023 [citado 15 Mar 2024]; 27(5): e4317. Disponible en: https://medisan.sld.cu/index.php/san/article/view/4317

18. Abbas AK, Lichtman AH, Pillai S. Inmunología celular y molecular. 10 ed. Madrid: Elsevier; 2022.
19. Gregoriano C, Heilmann E, Molitor A, Schuetz P. Role of procalcitonin use in the management of sepsis. J Thorac Dis [Internet]. 2020 [citado 2024 Mar 16]; 12(Suppl1): S5-15. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32148921/

20. Hernández G, Villanueva- Ibarra CA, Maldonado-Vega M, López-Vanegas NC, Ruiz-Cascante CE, Calderón-Salinas JV. Participation of phospholipase-A2 and sphingomyelinase in the molecular pathways to eryptosis induced by oxidative stress in lead-exposed workers. Toxicology and Applied Pharmacology [Internet]. 2019 [citado 2024 Mar 16]; 371: 12–19. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30928402/

21. Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK, Macian F, et al. Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging [Internet]. 2019 [citado 2024 Mar 16]; 11(21): 9234–9263. Disponible en: https://doi.org/10.18632/aging.102438

22. Velly L, Freund Y. Biomarcadores de la sepsis: ¿historia pasada o futuro apasionante?. Emergencias [Internet]. 2022 [citado 2024 Mar 16]; 34: 474-5. Disponible en: https://revistaemergencias.org/wp-content/uploads/2023/08/Emergencias-2022_34_6_474-475.pdf

23. Bachanova V, Perales MA, Abramson JS. Modern management of relapsed and refractory aggressive B-cell lymphoma: A perspective on the current treatment landscape and patient selection for CAR T-cell therapy. Bloodreviews [Internet]. 2020 [citado 2024 Mar 16]; 40: 100640. Disponible en: https://doi.org/10.1016/j.blre.2019.100640

24. Torres-Carpio DA, Vélez-Páez PA, Torres-Cabeza PR, Jara González FE, Montalvo-Villagómez MP, Aguayo-Moscoso SX, et al. Importancia de la Ruta de Señalización JAK/STAT en la Sepsis. Acta Med Peru [Internet]. 2022 [citado 2024 Mar 16]; 39(2): 151-65. Disponible en: http://www.scielo.org.pe/scielo.php?pid=S1728-59172022000200151&script=sci_arttext&tlng=pt

25. Rudnicka E, Suchta K, Grymowicz M, Calik-Ksepka A, Smolarczyk K, Duszewska AM, et al. Chronic Low Grade Inflammation in Pathogenesis of PCOS. International journal of molecular sciences [Internet]. 2021 [citado 2024 Mar 16]; 22(7): 3789. Disponible en: https://doi.org/10.3390/ijms22073789

26. Vanmeerbeek I, Sprooten J. De immunogenic cell death in immuno-oncology. Oncoimmunology [Internet]. 2020 [citado 2024 Mar 16]; 9(1): 1703449. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6959434/

27. Liu X, Lieberman J. Knocking ’em Dead: Pore-forming proteins in immune defense. Annu Rev Immunol [Internet]. 2020 [citado 2024 Mar 16]; 38: 455-85. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32004099/


28. Rodrigues MC, Morais JA, Ganassin R, Oliveira GR, Costa FC, Morais A, et al. An Overview on Immunogenic Cell Death in Cancer Biology and Therapy. Pharmaceutics [Internet]. 2022 [citado 2024 Mar 16]; 14(8): 1564. Disponible en: https://doi.org/10.3390/pharmaceutics14081564

29. Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, et al. Endoplasmic reticulum stress signaling-from basic mechanisms to clinical applications. FEBS J [Internet]. 2019 [citado 2024 Mar 16]; 286(2): 241-78. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30027602/

30. Deng H, Zhou Z, Yang W, Lin L, Wang S, Niu G, et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett [Internet]. 2020 [citado 2024 Mar 16]; 20(3): 1928-33. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32073871/

Published

2024-11-30

How to Cite

1.
Dunán-Cala L. Pathogen- and damage-associated molecular patterns as molecular barriers to the immune response. Univ. Méd. Pinareña [Internet]. 2024 Nov. 30 [cited 2025 Apr. 19];20:e1045. Available from: https://revgaleno.sld.cu/index.php/ump/article/view/1045